A 2,3,5,6-tetramethylenebicyclo[2.2.0]hexane derivative: a novel bisdiene molecule that produces a Dewar benzene skeleton upon two successive Diels-Alder reactions with dienophiles

Masakazu Ohkita, Kieko Sano, Sotoyuki Dohba, Yuko Fujita, Takanori Suzuki and
Takashi Tsuji*
Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received (in Cambridge, UK) 20th January 2000, Accepted 27th April 2000
Published on the Web 1st June 2000

Abstract

A new bisdiene molecule 1, the 1,4-acetal-bridged derivative of the hitherto unknown 2,3,5,6-tetramethylenebicyclo[2.2.0]hexane, is synthesized in four steps from dimethyl acetylenedicarboxylate and (E)-1,4-dichlorobut-2-ene. Reaction of $\mathbf{1}$ with dimethyl acetylenedicarboxylate or benzyne leads to the formation of the Dewar benzene derivatives 6 and 7, respectively, through two successive Diels-Alder additions of the dienophiles to 1. Dehydrogenation of the adducts $\mathbf{6}$ and $\mathbf{7}$ affords the corresponding 9,10-Dewar anthracene derivative $\mathbf{1 0}$ and 6,13-Dewar pentacene derivative 11, respectively. Compound $\mathbf{1 1}$ is characterized crystallographically. Reactions of $1,4-$ benzoquinone and N-phenylmaleimide with $\mathbf{1}$ are also reported.

Introduction

Awareness of the power of the Diels-Alder reaction in organic synthesis continues to stimulate the search for novel dienes and dienophiles. ${ }^{1}$ Of a wide range of dienes taking part in the Diels-Alder reaction, bisdiene molecules have attracted considerable recent attention owing to their potential use in the construction of belt-type molecular frameworks through repetitive Diels-Alder reactions with dienophiles. ${ }^{2}$ We were interested in developing a new bisdiene molecule, possessing a hitherto unknown 2,3,5,6-tetramethylenebicyclo[2.2.0]hexane skeleton 2, ${ }^{3}$ because its two successive Diels-Alder reactions with dienophiles formally produce a Dewar benzene structure A and subsequent dehydrogenation of the two six-membered rings thus formed would give the corresponding Dewar polyacene skeleton \mathbf{B} (Scheme 1). We designed 1,4-acetal-

bridged derivative $\mathbf{1}$ to prevent an undesired aromatization of the Dewar benzene product under thermal cycloaddition conditions and found, in fact, that the reaction sequence illustrated in Scheme 1 could be realized with it. ${ }^{4}$ In this paper we describe the preparation of $\mathbf{1}$ and its Diels-Alder reaction with some dienophiles.

1

2

Results and discussion

Preparation of 1

The synthesis of $\mathbf{1}$ is simple and straightforward (Scheme 2).

Scheme 2 Reagents and conditions: i, $h v,(E)$-1,4-dichlorobut-2-ene, $12{ }^{\circ} \mathrm{C}, 20 \%$; ii, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 90 \%$; iii, 1,1-dimethoxycyclohexane, TsOH, benzene, 68%; iv, t-BuOK, 18 -crown- 6 , THF, room temp., 78%.

Thus, irradiation of dimethyl acetylenedicarboxylate (DMAD) in (E)-1,4-dichlorobut-2-ene with a high-pressure mercury lamp at $12{ }^{\circ} \mathrm{C}$ afforded bicyclo[2.2.0]hexanes as a mixture of stereoisomers after purification by chromatography and distillation. ${ }^{5}$ A major isomer 3 was then isolated (yield 20\%) from the mixture by crystallization from ether, identified as a trans-anti-trans isomer by X-ray crystallography and used for the following transformations. LiAlH_{4} reduction of $\mathbf{3}$ followed by treatment of the resulting diol $\mathbf{4}$ with 1,1-dimethoxycyclohexane under the influence of a catalytic amount of TsOH
provided cyclohexylidene acetal 5 in 68% yield. Quadruple dehydrochlorination of $\mathbf{5}$ was achieved with t-BuOK in THF in the presence of 18 -crown- 6 at room temperature to afford the desired $\mathbf{1}$ in 78% yield as a colorless oil. The elimination reaction conditions described above were found to be essential for the efficient generation of $\mathbf{1}$; only a trace amount of $\mathbf{1}$ was produced when the reaction was carried out in THF in the absence of 18 -crown-6 or in DMSO. Compound $\mathbf{1}$ is prone to polymerization, as has been observed in other bisdiene systems, ${ }^{2,6}$ but shows stability adequate to allow its chromatographic purification and spectroscopic characterization.

Diels-Alder reaction of 1 with dienophiles

The Diels-Alder reactivity of 1,2-dimethylenecycloalkanes has been discussed in relation to the distance between the methylene carbon atoms (1,4-distance), ${ }^{7}$ and the long 1,4-distance in 1,2dimethylenecyclobutanes obstructs the Diels-Alder addition of dienophiles. ${ }^{8}$ Accordingly, reaction of $\mathbf{1}$ with highly activated dienophiles was initially examined and was found to proceed smoothly. Thus, when a mixture of $\mathbf{1}$ and DMAD in benzene was heated at $65^{\circ} \mathrm{C}$ for 20 h , the $1: 2$ adduct $\mathbf{6}$ was obtained in 65% yield (Scheme 3). Similarly, reaction of $\mathbf{1}$ with benzyne,

$6 \mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

7

Scheme 3 Reagents and conditions: i, DMAD, benzene, $65^{\circ} \mathrm{C}, 20 \mathrm{~h}$, 65%; ii, 1,2-dibromobenzene, n - BuLi , toluene, room temp., 20 h , 35%; iii, 1,4-benzoquinone, benzene, $65^{\circ} \mathrm{C}, 44 \mathrm{~h}$, then DDQ , room temp., $4 \mathrm{~h}, 55 \%$; iv, N-phenylmaleimide, benzene, $65^{\circ} \mathrm{C}, 4 \mathrm{~h}, 75 \%$.
generated from 1,2-dibromobenzene and n - BuLi , in toluene at room temperature afforded the $1: 2$ adduct 7 in 35% yield. It should be pointed out that the formation of $\mathbf{6}$ and $\mathbf{7}$ represents a novel preparation of Dewar benzene derivatives. ${ }^{9}$

The addition of the first equivalent of dienophile to $\mathbf{1}$ was faster than that of the second one, ${ }^{6}$ so that the $1: 1$ adducts could also be isolated in reasonable yields from the reaction of $\mathbf{1}$ with certain dienophiles. Thus, reaction of $\mathbf{1}$ with 1,4benzoquinone in benzene at $65^{\circ} \mathrm{C}$ followed by treatment of the mixture with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) afforded the $1: 1$ adduct $\mathbf{8}$ in 55% yield as the major product. Similarly, reaction of $\mathbf{1}$ with N-phenylmaleimide $\left(65^{\circ} \mathrm{C}, 4 \mathrm{~h}\right)$ gave the $1: 1$ adduct 9 in 75% yield. The stereochemistry of 9 was determined by examining the NOESY spectrum; the methylene proton H^{c} which is trans to the angular
proton H^{a} exhibits a NOE with the acetal methylene proton H^{d}. The selective formation of 9 would be most reasonably explained by the exo-orientation approach of the dienophile from the endo-face of the diene moiety in 1 (Scheme 4). There-

Scheme 4
fore, the cyclohexylidene acetal moiety in $\mathbf{1}$ would confer not only the thermal stability of the adducts but also the π-facial selectivity for the addition owing to the steric hindrance.

9,10-Dewar anthracene and 6,13-Dewar pentacene derivatives

To explore the scope of the Diels-Alder reaction of $\mathbf{1}$ with dienophiles, further chemical transformations of the adducts were also examined. A saliant feature of the present methodology is the formation of a Dewar benzene structure fused with cyclohexa-1,4-diene moieties, and this provides a simple and versatile route to the Dewar forms of polyacenes. ${ }^{10-12}$ Thus, the dehydrogenation of $\mathbf{6}$ with activated MnO_{2} in benzene at room temperature gave the 9,10 -Dewar anthracene derivative 10 in 84% yield while the dehydrogenation of 7 with DDQ in benzene at room temperature gave 6,13-Dewar pentacene derivative $\mathbf{1 1}$ in 41% yield (Scheme 5). Compound $\mathbf{1 1}$ repre-

Scheme 5 Reagents and conditions: i, activated MnO_{2}, benzene, room temp., 6 days, 84%; ii, DDQ, benzene, room temp., $1 \mathrm{~h}, 41 \%$.
sents, to the best of our knowledge, the first example of the Dewar form of pentacenes, so that its structure was determined by X-ray crystallography (Fig. 1). The remarkably long C-C bond length $[1.614(3) \AA \AA]$ found for the central bond of the Dewar structure is noteworthy. ${ }^{13}$

Conclusions

We have successfully developed a new bisdiene molecule 1 which produces a Dewar benzene skeleton upon two successive

Fig. 1 X-Ray molecular structure of 11. Selected bond length (\AA) and torsion angles $\left({ }^{\circ}\right)$ (standard deviation in parentheses): C1-C2 1.531(3), C2-C3 1.353(3), C3-C4 1.427(3), C4-C5 1.418(3), C5-C6 1.361(4), C6-C7 1.401(4), C7-C8 1.360(4), C8-C9 1.421(3), C9-C10 1.417(3), C10-C11 1.368(3), C11-C12 1.533(3), C12-C13 1.535(3), C13-C14 1.355(3), C14-C15 1.428(3), C15-C16 1.408(3), C16-C17 1.367(3), C17-C18 1.392(4), C18-C19 1.363(3), C19-C20 1.416(3), C20-C21 1.429(3), C21-C22 1.355(3), C1-C22 1.530(3), C1-C12 1.614(3), C2C11 1.411(3), C4-C9 1.436(3), C13-C22 1.414(3), C15-C20 1.436(3); C2-C1-C12-C13 112.6(2), C11-C12-C1-C22 112.2(2).

Diels-Alder reactions with activated dienophiles. Dehydrogenation of the 1:2 adducts provides the corresponding Dewar form of polyacenes. Similar bisdiene systems possessing other 1,4-bridging units may also be available based on the synthetic scheme for 1 . Therefore, the present results open a unique and versatile route to Dewar derivatives which, in turn, would be regarded as potential precursors for novel cyclophanes as well as belt-type molecules.

Experimental

General methods
Melting points are uncorrected. Elemental analyses were performed by the Center for Instrumental Analysis of Hokkaido University. IR spectra were taken on a Hitachi 270-30 infrared spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Hitachi R-1900 and JEOL EX-400 spectrometers at 90 and 400 MHz , respectively; chemical shifts are given in ppm using tetramethylsilane as a reference, and J values are given $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL EX-400 spectrometer in CDCl_{3} at 100 MHz ; chemical shifts are given in ppm using solvent peak as a reference. Electronic absorption spectra were measured on a Hitachi U-3500 spectrophotometer in hexane. Mass spectra were recorded on a JEOL JMS-SX102A spectrometer. GLC work was done on Hitachi 163 gas chromatographs. Preparative chromatography was performed on Merck Kieselgel 60 (70-230 mesh). The light source for photochemistry was a Halos (Eiko-sha, Japan) 450 W highpressure Hg lamp. Reagents and solvents were obtained from commercial sources and purified prior to use. Ether refers to diethyl ether.

$\left(2 R^{*}, 3 R^{*}, 5 S^{*}, 6 S^{*}\right)-1,4-B i s(m e t h o x y c a r b o n y l)-2,3,5,6-t e t r a k i s-$ (chloromethyl)bicyclo[2.2.0]hexane (3)

A solution of DMAD ($23.1 \mathrm{~g}, 0.16 \mathrm{~mol}$) in (E)-1,4-dichloro-but-2-ene (350 mL) was bubbled with argon for 10 min , and irradiated with a high-pressure Hg lamp at $12^{\circ} \mathrm{C}$. The reaction
was monitored by GLC (10% Silicon SE30, $0.5 \mathrm{~m}, 100-270{ }^{\circ} \mathrm{C}$) and the irradiation was terminated after $14 \mathrm{~h}(46 \% \mathrm{GC}$ conversion). The mixture was concentrated in vacuo to recover the unreacted DMAD and (E)-1,4-dichlorobut-2-ene. The residue was purified by chromatography (hexane 90%, ether 5%, chloroform 5%) to give $\mathbf{3}$ as a mixture of stereoisomers (22.2 g , 35%), from which the trans-anti-trans isomer 3 was isolated by crystallization from ether ($12.7 \mathrm{~g}, 20 \%$), mp $132-133{ }^{\circ} \mathrm{C}$ (ether) (Found: C, $42.74 ; \mathrm{H}, 4.60 ; \mathrm{Cl}, 36.18 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Cl}_{4}$ requires C , $42.88 ; \mathrm{H}, 4.63 ; \mathrm{Cl}, 36.17 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2956,1712,1440$, 1312, 1284 and 1216; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.96(2 \mathrm{H}$, ddd, $J 11.2,9.8$ and 4.9), $3.17(2 \mathrm{H}$, ddd, $J 10.8,9.8$ and 5.4), 3.69 (2 H , dd, $J 11.2$ and 10.8), $3.70(2 \mathrm{H}, \mathrm{t}, J 11.2), 3.72-3.78(2 \mathrm{H}$, $\mathrm{m})$, $3.75(6 \mathrm{H}, \mathrm{s})$ and $3.92(2 \mathrm{H}$, dd, $J 11.2$ and 4.9$)$; $\delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 42.23,42.30,43.44,45.01,49.64,52.41$ and 169.82; m/z (FD) $396\left(\mathrm{M}^{+}+6,16 \%\right), 394\left(\mathrm{M}^{+}+4,64\right), 392$ $\left(\mathrm{M}^{+}+2,100\right)$ and $390\left(\mathrm{M}^{+}, 75\right)$.

$\left(2 R^{*}, 3 R^{*}, 5 S^{*}, 6 S^{*}\right)-1,4-B i s(h y d r o x y m e t h y l)-2,3,5,6-t e t r a k i s-$ (chloromethyl)bicyclo[2.2.0]hexane (4)

To a stirred suspension of lithium aluminium hydride (5.3 g , $140 \mathrm{mmol})$ in dry ether $(830 \mathrm{~mL})$ was added dropwise a solution of $3(27.4 \mathrm{~g}, 70 \mathrm{mmol})$ in dry ether $(400 \mathrm{~mL})$ over 2 h under icecooling. The mixture was stirred at room temperature for 12 h and then treated successively with water $(5.3 \mathrm{~mL}), 15 \%$ aqueous $\mathrm{NaOH}(5.3 \mathrm{~mL})$, and water (15.9 mL) under ice-cooling. The precipitate was filtered off and the ethereal filtrate was washed successively with water $(2 \times 300 \mathrm{~mL})$ and brine $(200 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give 4 as crystals (17.6 g, 90%), mp 123-124 ${ }^{\circ} \mathrm{C}$ (ether); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3396,2952$, 2856, 1448, 1280, 1040 and $712 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.66$ (2 H , ddd, $J 9.2,7.8$ and 7.3), 2.77 (2 H , ddd, $J 9.7,9.2$ and 6.3), $2.97(2 \mathrm{H}, \mathrm{s}), 3.63(2 \mathrm{H}$, dd, $J 11.2$ and 9.7$)$, $3.77(2 \mathrm{H}, \mathrm{dd}, J 11.3$ and 7.3), $3.78(2 \mathrm{H}$, dd, $J 11.2$ and 6.3$), 3.85(2 \mathrm{H}, \mathrm{d}, J 11.7)$, $3.86(2 \mathrm{H}, \mathrm{dd}, J 11.3$ and 7.8) and $4.00(2 \mathrm{H}, J 11.7)$.

($8^{\prime} R^{*}, 9^{\prime} R^{*}, 10^{\prime} S^{*}, 11^{\prime} S^{*}$)-Spiro[cyclohexane-1,4'-3', $\mathbf{5}^{\prime}$ -dioxa-8 $\mathbf{8}^{\prime}, \mathbf{9}^{\prime}, 10^{\prime}, 11^{\prime}$-tetrakis(chloromethyl)tricyclo[5.2.2.0 $\left.{ }^{1,7}\right]$ undecane] (5)

A mixture of 4 ($5.7 \mathrm{~g}, 17 \mathrm{mmol}$), 1,1-dimethoxycyclohexane $(4.9 \mathrm{~g}, 34 \mathrm{mmol})$, and $\mathrm{TsOH}(0.15 \mathrm{~g}, 0.8 \mathrm{mmol})$ in benzene $(300 \mathrm{~mL})$ was heated to boiling and MeOH generated was azeotopically distilled off through a Vigreux column (30 cm). After 2 h , the mixture was cooled to room temperature, diluted with ether (500 mL), washed successively with 5% aqueous NaHCO_{3} $(300 \mathrm{~mL})$ and brine $(300 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{Na}_{2} \mathrm{SO}_{4}$ (1:1), concentrated and purified by chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give 5 ($4.77 \mathrm{~g}, 68 \%$) as an oil (Found: $\mathrm{M}^{+}, 414.0696$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Cl}_{4}$ requires $\left.M, 414.0687\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2936$, $2856,1450,1290,1158,1100,1036$ and $734 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.42-1.71(10 \mathrm{H}, \mathrm{m}), 2.49-2.86(4 \mathrm{H}, \mathrm{m})$ and 3.58-3.96 $(12 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.75,25.68,33.69,42.34$, $42.48,43.69,44.35,46.11,58.05$ and 103.57 ; m/z (FD) 420 $\left(\mathrm{M}^{+}+6,11 \%\right), 418\left(\mathrm{M}^{+}+4,52\right), 416\left(\mathrm{M}^{+}+2,100\right)$ and 414 $\left(\mathrm{M}^{+}, 78\right)$.

Spiro[cyclohexane-1, $4^{\prime}-3^{\prime}, 5^{\prime}$-dioxa- $8^{\prime}, 9^{\prime}, 10^{\prime}, 11^{\prime}$-tetramethylenetricyclo[5.2.2.0 ${ }^{1,7}$]undecane] (1)

To a mixture of t-BuOK ($739 \mathrm{mg}, 6.6 \mathrm{mmol}$) and 18 -crown- 6 $(917 \mathrm{mg}, 4.5 \mathrm{mmol})$ in THF (45 mL) was added dropwise a solution of $5(445 \mathrm{mg}, 1.1 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ over 1 h at $0^{\circ} \mathrm{C}$ under argon. After the addition, the mixture was stirred at room temperature for 3 h , poured into water $(100 \mathrm{~mL})$ and extracted with pentane $(2 \times 100 \mathrm{~mL})$. The combined extracts were washed with brine $(2 \times 50 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{CO}_{3}-$ $\mathrm{Na}_{2} \mathrm{SO}_{4}(1: 1)$, concentrated and purified by chromatography (hexane 90%, ether 10%) to give $1(225 \mathrm{mg}, 78 \%)$ as an oil; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2932,2860,1100$ and $882 ; \lambda_{\text {max }}$ (hexane) $/ \mathrm{nm}$
$231\left(\varepsilon / \mathrm{mL} \mathrm{mol}^{-1} \mathrm{~cm}^{-1} 17800\right), 238$ (16700) and 255sh (6900); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40-1.71(10 \mathrm{H}, \mathrm{m}), 4.02(4 \mathrm{H}, \mathrm{s}), 4.89$ $(4 \mathrm{H}, \mathrm{s})$ and $5.28(4 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.79,25.71$, 33.27, 60.99, 62.14, 103.62, 104.10 and 150.46; m/z (EI) 270 $\left(\mathrm{M}^{+}, 0.5 \%\right)$ and $172\left(\mathrm{M}^{+}-98,100\right)$.

Reaction of 1 with DMAD

A mixture of $\mathbf{1}(350 \mathrm{mg}, 1.3 \mathrm{mmol})$ and DMAD $(1.81 \mathrm{~g}$, 12.8 mmol) in benzene (15 mL) was heated at $65^{\circ} \mathrm{C}$ for 20 h . After the solvent was evaporated, the unreacted DMAD was recovered by distillation in vacuo. The residue was purified by chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} 50 \%$, ether 50%) followed by crystallization from ether to give $6(468 \mathrm{mg}, 65 \%)$ as crystals, mp $167.5-169^{\circ} \mathrm{C}$ (ether) (Found: $\mathrm{M}^{+}, 554.2148 . \mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{10}$ requires M, 554.2152); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2944,1720,1630,1434,1272$, 1096 and 1052; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40-1.71(10 \mathrm{H}, \mathrm{m}), 2.90$ ($4 \mathrm{H}, \mathrm{d}, J 16.0$), $3.14(4 \mathrm{H}, \mathrm{d}, J 16.0), 3.78(12 \mathrm{H}, \mathrm{s})$ and 3.93 $(4 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.79,25.73,27.45,33.03,52.38$, 58.19, 65.07, 103.47, 133.67, 143.25 and 168.60; m/z (FD) 554 $\left(\mathrm{M}^{+}, 23 \%\right)$ and $524\left(\mathrm{M}^{+}-30,100\right)$.

Reaction of 1 with benzyne

To a mixture of $\mathbf{1}(119 \mathrm{mg}, 0.44 \mathrm{mmol})$ and 1,2 -dibromobenzene ($360 \mathrm{mg}, 1.5 \mathrm{mmol}$) in toluene (10 mL) was added $n-\mathrm{BuLi}(1.0 \mathrm{~mL}$ of a 1.5 M solution in hexane, 1.5 mmol) over 10 min under ice-cooling. After the reaction was stirred at room temperature for 20 h , the mixture was diluted with ether (50 mL), washed successively with water (30 mL) and brine (30 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by chromatography (benzene 50%, hexane 50%) followed by crystallization from ether to give $7(92 \mathrm{mg}, 35 \%)$ as an amorphous solid (Found: M^{+}, 422.2271. $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{2}$ requires M, 422.2246); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2932,2860,1098$ and $744 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.40-1.71(10 \mathrm{H}, \mathrm{m}), 3.33(4 \mathrm{H}, \mathrm{d}, J 16.1), 3.54$ $(4 \mathrm{H}, \mathrm{d}, J 16.1), 4.08(4 \mathrm{H}, \mathrm{s})$ and $7.13(8 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, CDCl_{3}) 22.89, 25.85, 29.25, 33.46, 58.97, 65.21, 103.28, 125.94, $129.88,134.35$ and $145.31 ; m / z(\mathrm{FD}) 422\left(\mathrm{M}^{+}, 100 \%\right)$ and 324 $\left(\mathrm{M}^{+}-98,64\right)$.

Reaction of 1 with benzo-1,4-quinone

A mixture of $\mathbf{1}(220 \mathrm{mg}, 0.8 \mathrm{mmol})$ and 1,4-benzoquinone $(300 \mathrm{mg}, 2.7 \mathrm{mmol})$ in benzene (20 mL) was heated at $65^{\circ} \mathrm{C}$ for 44 h . DDQ ($362 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added to the cooled mixture and the reaction was stirred at room temperature for 4 h . After the solvent was evaporated, the residue was purified by chromatography (hexane 80%, EtOAc 20%) followed by crystallization from ether to give $8(165 \mathrm{mg}, 55 \%)$ as an amorphous solid (Found: M^{+}, 376.1694. $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4}$ requires M, 376.1674); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2932,1656,1308$ and 1092; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40-1.71(10 \mathrm{H}, \mathrm{m}), 2.89-3.32(10 \mathrm{H}, \mathrm{m}), 4.00$ $(4 \mathrm{H}, \mathrm{s}), 4.92(2 \mathrm{H}, \mathrm{s}), 5.292 \mathrm{H}, \mathrm{s})$ and $6.74(2 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $22.66,22.82,25.71,32.66,59.29,64.47,103.66$, $105.05,136.36,140.71,141.42$ and $147.68 ; \mathrm{m} / \mathrm{z}(\mathrm{FD}) 378\left(\mathrm{M}^{+}\right.$, 100%).

Reaction of 1 with N-phenylmaleimide

A mixture of $\mathbf{1}(82 \mathrm{mg}, 0.3 \mathrm{mmol})$ and N -phenylmaleimide (320 $\mathrm{mg}, 18 \mathrm{mmol})$ in benzene (5 mL) was heated at $65^{\circ} \mathrm{C}$ for 4 h . After the solvent was evaporated, the residue was purified by chromatography (ether) followed by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ 50%, ether 50%) to give $9(99 \mathrm{mg}, 75 \%)$ as an amorphous solid (Found: $\mathrm{M}^{+}, 443.2070 . \mathrm{C}_{28} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{~N}$ requires $M, 443.2096$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2936,1710$ and $1100 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.40-1.71 ($10 \mathrm{H}, \mathrm{m}$), $2.44(2 \mathrm{H}, \mathrm{dd}, J 16.6$ and 6.8$), 2.63(2 \mathrm{H}$, d, $J 16.6$), $3.30(2 \mathrm{H}, \mathrm{d}, J 6.8), 3.94(4 \mathrm{H}, \mathrm{s}), 4.91(2 \mathrm{H}, \mathrm{s}), 5.30$ ($2 \mathrm{H}, \mathrm{s}$) and $7.30-7.50(5 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 20.92$, $22.78,25.73,37.71,38.30,59.13,64.10,103.51,104.79,126.50$, 128.58, 129.15, 132.04, 142.78, 148.50 and $178.71 ; \mathrm{m} / \mathrm{z}$ (FD) $443\left(\mathrm{M}^{+}, 31 \%\right)$ and $345\left(\mathrm{M}^{+}-98,100\right)$.

Dehydrogenation of 6

A mixture of $\mathbf{6}(211 \mathrm{mg}, 0.4 \mathrm{mmol})$, activated $\mathrm{MnO}_{2}(3.8 \mathrm{~g}, 43.7$ $\mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(50 \mathrm{mg})$ in benzene $(55 \mathrm{~mL})$ was stirred at room temperature for 6 days under argon. The mixture was filtered through a short pad of Celite and the filtrate was concentrated in vacuo. Crystallization of the residue from ether afforded 10 as crystals ($176 \mathrm{mg}, 84 \%$), mp $140-142^{\circ} \mathrm{C}$ (ether) (Found: $\mathrm{M}^{+}, 550.1838 . \mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{10}$ requires $M, 550.1839$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2952,1732,1272$ and $1106 ; \delta_{\mathrm{H}}(90 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.40-1.71(10 \mathrm{H}, \mathrm{m}), 3.88(12 \mathrm{H}, \mathrm{s}), 4.42(4 \mathrm{H}, \mathrm{s})$ and $7.56(4 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.64,25.56,33.15$, $52.70,59.34,66.72,104.33,123.44,128.46,132.37$ and 167.97; $m / z(\mathrm{FD}) 550\left(\mathrm{M}^{+}, 100 \%\right)$.

Dehydrogenation of 7

To a solution of $\mathbf{7}(157 \mathrm{mg}, 0.37 \mathrm{mmol})$ in benzene (30 mL) was added DDQ ($211 \mathrm{mg}, 0.93 \mathrm{mmol}$) in portions and the reaction was stirred at room temperature for 1 h . The mixture was diluted with ether (30 mL), washed successively with 10% aqueous $\mathrm{NaOH}(30 \mathrm{~mL})$ and brine (30 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by chromatography (dichloromethane) followed by crystallization from ether to give 11 as crystals ($63 \mathrm{mg}, 41 \%$), mp $152.5-153.5^{\circ} \mathrm{C}$ (ether) (Found: M^{+}, 418.1929. $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $M, 418.1933$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 2936, 2856 and 1098; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.40-1.71(10 \mathrm{H}$, $\mathrm{m}), 4.60(4 \mathrm{H}, \mathrm{s}), 7.37\left(4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right), 7.65(4 \mathrm{H}, \mathrm{s})$ and 7.75 ($4 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 22.76,25.70,33.20$, $61.00,66.97,104.08,120.74,125.27,128.40,134.15$ and 145.05 ; m / z (FD) 418 ($\mathrm{M}^{+}, 100 \%$).

X-Ray structure determinations \dagger

Crystal data for 3. Colorless block ($0.2 \times 0.2 \times 0.2 \mathrm{~mm}$), $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Cl}_{4}, M=392.1$, orthorhombic, space group Pbca, $a=15.857(3), b=17.205(2), c=13.287(2) \AA, V=3624(1) \AA^{3}$, $Z=8, D_{\text {calc }}=1.437 \mathrm{~g} \mathrm{~cm}^{-3}, T=296 \mathrm{~K}, \mu=6.67 \mathrm{~cm}^{-1}, F(000)=$ 1616. Measurements were made on a Rigaku AFC5R diffractometer with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71069 \AA$). A total of 4455 unique reflections $\left(2 \theta_{\text {max }}=55^{\circ}\right)$ were collected, of which 1102 observed reflections $[I>3 \sigma(I)$] were used in the structure solution (direct methods) and refinement (full-matrix least-squares with 199 parameters) to give final $R=0.043$ and $w R=0.055$. Residual electron density is $0.22 \mathrm{e}^{-3} \AA^{-3}$.

Crystal data for 11. Colorless rod $(0.4 \times 0.2 \times 0.1 \mathrm{~mm})$, $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{2}, M=418.5$, monoclinic, space group $P 22_{1} / c, a=$ $11.4190(8), \quad b=11.0908(5), \quad c=17.519(2) \AA, \quad \beta=90.025(3)^{\circ}$, $V=2218.7(3) \AA^{3}, Z=4, D_{\text {calc }}=1.253 \mathrm{~g} \mathrm{~cm}^{-3}, T=203 \mathrm{~K}$, $\mu=0.77 \mathrm{~cm}^{-1}, F(000)=888$. Measurements were made on a Rigaku CCD diffractometer with graphite monochromated Mo-K α radiation ($\lambda=0.71069 \AA$). A total of 5601 unique reflections ($2 \theta_{\max }=55^{\circ}$) were collected, of which 3346 observed reflections $[I>3 \sigma(I)]$ were used in the structure solution (direct methods) and refinement (full-matrix least-squares with 289 parameters) to give final $R=0.062$ and $w R=0.077$. Residual electron density is 0.16 e \AA^{-3}.

Acknowledgements

We thank Professor Tamotsu Inabe (Hokkaido University) for the use of X-ray analytical facilities. This work was supported in part by a Grant-in-Aid for Scientific Research (No. 09640620) from the Ministry of Education, Science, Sports and Culture of Japan.

[^0]
References

1 J. Sauer, Angew. Chem., Int. Ed. Engl., 1967, 6, 16; J. Sauer and R. Sustmann, Angew. Chem., Int. Ed. Engl., 1980, 19, 779; W. Carruthers, Cycloaddition Reactions in Organic Synthesis, Pergamon Press, Oxford, England, 1990; F. Fringuelli and A. Taticchi, Dienes in The Diels-Alder Reaction, John Wiley \& Sons, New York, 1990.
2 F. H. Kohnke, J. P. Mathias and J. F. Stoddart, Top. Curr. Chem., 1993, 165, 17 and references cited therein; A. Godt, V. Enkelmann and A.-D. Schlüter, Angew. Chem., Int. Ed. Engl., 1989, 28, 1680; R. J. Graham and L. A. Paquette, J. Org. Chem., 1995, 60, 5770; J. Benkhoff, R. Boese, F.-G. Klärner and A. E. Wigger, Tetrahedron Lett., 1994, 35, 73; R. M. Cory, C. L. McPhail and A. J. Dikmans, Tetrahedron Lett., 1993, 34, 7533; R. M. Cory, C. L. McPhail, A. J. Dikmans and J. J. Vittal, Tetrahedron Lett., 1996, 37, 1983; R. M. Cory and C. L. McPhail, Tetrahedron Lett., 1996, 37, 1987; S. Wegener and K. Müllen, Chem. Ber., 1991, 124, 2101; A. D. Thomas and L. L. Miller, J. Org. Chem., 1986, 51, 4160; R. W. Alder, P. R. Allen, L. S. Edwards, G. I. Fray, K. E. Fuller, P. M. Gore, N. M. Hext, M. H. Perry, A. R. Thomas and K. S. Turner, J. Chem. Soc., Perkin Trans. 1, 1994, 3071.
3 Possible generation of 2 from 1,2,4,5-tetramethylenebenzene has been discussed, see: J. H. Reynolds, J. A. Berson, K. K. Kumashiro, J. C. Duchamp, K. W. Zilm, A. Rubello and P. Vogel, J. Am. Chem. Soc., 1992, 114, 763; J. H. Reynolds, J. A. Berson, J. C. Scaiano and A. B. Berinstain, J. Am. Chem. Soc., 1992, 114, 5866; R. Liu, X. Zhou and J. F. Hinton, J. Am. Chem. Soc., 1992, 114, 6925.

4 For a preliminary account of this work, see: M. Ohkita, T. Suzuki and T. Tsuji, Chem. Commun., 1999, 1999.
5 Photocycloaddition of DMAD with ethylenes: D. C. Owsley and J. J. Bloomfield, J. Org. Chem., 1971, 36, 3768; S. Majeti, V. A. Majeti and C. S. Foote, Tetrahedron Lett., 1975, 16, 1177; T. Tsuji, H. Watanabe, J. Tanaka, M. Inada and S. Nishida, Chem. Lett., 1990, 1193.
6 P. Vogel and A. Florey, Helv. Chim. Acta, 1974, 57, 200; O. Pilet and P. Vogel, Helv. Chim. Acta, 1981, 64, 2563.

7 H.-D. Scharf, H. Plum, J. Fleischhauer and W. Schleker, Chem. Ber., 1979, 112, 862; R. Sustmann, M. Böhm and J. Sauer, Chem. Ber., 1979, 112, 883.
8 Diels-Alder reactions of 1,2-dimethylenecyclobutanes with dienophiles: F. R. Farr and N. L. Bauld, J. Am. Chem. Soc., 1970, 92, 6695; H.-D. Scharf, H. Plum, J. Fleischhauer and W. Schleker, Chem. Ber., 1979, 112, 862; W. R. Dolbier, Jr. and C. R. Burkholder, J. Org. Chem., 1984, 49, 2381; T. Minami, Y. Taniguchi and I. Hirao, J. Chem. Soc., Chem. Commun., 1984, 1046; T. Minami, N. Harui and Y. Taniguchi, J. Org. Chem., 1986, 51, 3572; Y. Tobe, T. Takahashi, T. Ishikawa, M. Yoshimura, M. Suwa, K. Kobiro, K. Kakiuchi and R. Gleiter, J. Am. Chem. Soc., 1990, 112, 8889; D. S. van Es, F. J. J. de Kanter, W. H. de Wolf and F. Bickelhaupt, Angew. Chem., Int. Ed. Engl., 1995, 34, 2553.
9 A. Greenberg and J. F. Liebman, Strained Organic Molecules, Academic Press, New York, 1978; Y. Tobe, Top. Curr. Chem., 1994, 172, 1; V. V. Kane, W. H. de Wolf and F. Bickelhaupt, Tetrahedron, 1994, 50, 4575.
10 1,4-Dewar naphthalenes: R. N. McDonald and D. G. Fvickey, J. Am. Chem. Soc., 1968, 90, 5315; R. N. McDonald, D. G. Fvickey and G. M. Muschik, J. Org. Chem., 1972, 37, 1704; D. T. Carty, Tetrahedron Lett., 1969, 10, 4753; W. L. Mandella and R. W. Frank, J. Am. Chem. Soc., 1973, 95, 971; R. W. Frank, W. L. Mandella and K. J. Falci, J. Org. Chem., 1975, 40, 327.

11 9,10-Dewar anthracenes: D. E. Applequist and R. Searle, J. Am. Chem. Soc., 1964, 86, 1389; H. Dreeskamp, B. Jahn and J. Pabst, Z. Naturforsch., Teil A, 1981, 36, 665; W. Pritschins and W. Grimme, Tetrahedron Lett., 1982, 23, 1151; H. Hart and B. Ruge, Tetrahedron Lett., 1977, 18, 3143; W. Pritschins and W. Grimme, Tetrahedron Lett., 1979, 20, 4545; H. Güsten, M. Mintas and L. Klasinc, J. Am. Chem. Soc., 1980, 102, 7936.
12 1,4-Dewar anthracene: N. C. Yang, R. V. Carr, J. K. Mcvey and S. A. Rice, J. Am. Chem. Soc., 1974, 96, 2297.

13 The long central C-C bond (1.63 A) of hexamethyl Dewar benzene determined by gas phase electron diffraction has been reported, see: M. J. Cardillo and S. H. Bauer, J. Am. Chem. Soc., 1970, 92, 2399.

[^0]: \dagger CCDC reference number 207/432. See http://www.rsc.org/suppdata/ $\mathrm{pl} / \mathrm{b} 0 / \mathrm{b} 000569 \mathrm{j} /$ for crystallographic files in .cif format.

